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Abstract— In this paper the critical delay in R-2R Ladder digital to analog (D/A) converter circuits is minimized by uniform interconnect 

wire sizing via Generalized Geometric Programming approach. Elmore delay model is considered for calculating the delays assoc iated with 
the circuits during low to high or high to low transitions of voltage sources. The wire sizing problem is formulated as a Generalized Geom e-
tric Programming problem in order to minimize the critical delay associated with the circuit. Assuming the critical delay corresponding to k-

bit R-2R Ladder D/A converter circuit as objective function, the widths of the interconnect wire segments (optimization variables) are sized 
by solving the convex optimization problem. Numerical experiments show that critical delay associated with the R-2R Ladder D/A Conver-

ter Circuit can be significantly reduced while the interconnect wire segments are sized following the proposed approach. It is observed that 
the percentage of reduction in critical delay in sized-circuit decreases as the order of the circuit increases. Results show that 39.46 % re-
duction in critical delay can be achieved by wire sizing in 2-bit R-2R Ladder D/A converter circuit, while the same reduction is only 20.64 % 
in 16-bit R-2R Ladder D/A converter circuit. 

Index Terms— Critical Delay; Digital to Analog Converter; Elmore Delay Model; Geometric Programming; Mixed-Signal VLSI; R-2R Lad-

der; Wire Sizing. 

——————————      —————————— 

1 INTRODUCTION                                                                     

IZING of active and passive circuit components (e.g.-
transistors and interconnect wire segments) is an effective 

technique to achieve desirable circuit performance in analog 
and digital integrated circuit chips. Both the resistance and 
capacitance of a circuit component are functions of component 
size. Thus the delay of a circuit can be minimized by proper 
sizing of circuit components, since the delay associated with 
each circuit component can be modeled as a product of the 
resistance of the component and the capacitance of the sub 
circuit driven by the component [1]. Interconnect wire sizing 
problem refers to the problem of determining the width of 
wire segments at every point; objective is to reduce the delay 
associated with the circuit and there by improve the circuit 
performance. Several researches [2-7] have shown the wire 
sizing is an efficient technique to reduce the circuit delay. 

Analog circuits are required to interface between the core 
digital system (most of the functionality in an integrated sys-
tem is implemented in digital circuitry) and the outer world. 
Therefore to realize an integrated system on a single chip, the 
digital and analog circuits are combined together, although in 
an integrated system, the analog circuitry occupies a small 
physical area compared to the digital counterpart. Digital to 
analog (D/A) and analog to digital (A/D) conversion is thus 
an important section of the mixed-signal integrated circuits to 
realize the interface between digital and analog systems inside 
the chip. Therefore, to determine the overall performance of 

the mixed-signal integrated circuits the performance of the 
A/D and D/A plays a very significant role. In the present pa-
per, authors have made an attempt to size widths of the inter-
connect wire segments in k-bit R-2R Ladder D/A Converter to 
minimize the circuit delay and there by improve the perfor-
mance. The wire sizing problem is modeled and solved as a 
convex optimization problem (Generalized Geometric Pro-
gramming problem). Numerical experiments show that the 
solutions to the sequence of convex programs converge to the 
same wire sizes for widely varying initial guesses. Thus, it is 
strongly suggests that the approach is capable of determining 
the globally optimum solution to the problem. 

2   GEOMETRIC PROGRAMMING PROBLEM 

A geometric program (GP) is a non-linear optimization 
problem which has the following standard form [8], 

          Minimize   xf0  
   Subject to    1xfk ,     m.........,,,k 321 ,              (1) 

     1xgk ,    p.........,,,k 321 , 

Where the objective function f0(x) and each one of the inequali-
ty constraint function fk(x) are posynomials; Equality con-
straint functions gk(x) are monomials and xk are the optimiza-
tion variables (xk > 0). The standard form of a posynomial 
function can be written as, 

   

k j

kj
jk xCxf
     (2) 

Where Ck’s are positive coefficients and αkj’s are positive or 
negative arbitrary real numbers. By taking the logarithmic 
transformation on the optimization variables, the posynomial 
function becomes, 
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Where zj = ln(xj); It is very easy to show that f(z) is a convex 
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function of the transformed variables zj’s. Thus the geometric 
programming problem becomes a convex programming prob-
lem, by taking the logarithmic transformation on the optimiza-
tion variables [8]. The advantageous property of a convex pro-
gramming is that any of its local minima is also a global mi-
nima. 

Formulating various practical engineering analysis or de-
sign problems as GP is called GP modeling. GP modeling is 
successfully done on various fields of engineering, such as 
Electrical engineering [9], wireless communication [10], semi-
conductor devices [11] and circuits [12-13], heat sink design 
for sub-millimeter wave sources [14] etc. Wire sizing problem 
of k-bit R-2R Ladder D/A Converter circuit can also be mod-
eled as a geometric programming problem; the procedure is 
discussed in detail in the next section. 

3 GP MODELING OF WIRE SIZING PROBLEM IN R-2R 

LADDER D/A CONVERTER CIRCUIT 

In this section authors have modeled the problem of determin-
ing the widths w1, w2, w3 ………… wn of n interconnect wire 
segments in a R-2R Ladder D/A Converter Circuit inside a 
mixed-signal integrated circuit chip. A simple π-model for 
each wire segment is shown in Fig. 1. The wire resistance and 
capacitances are given by, 

i

i
i

w

l
R   & iii w.l.C       (4) 

Where li and wi are the length and width of the ith wire seg-
ment respectively and  and  are positive constants depend-
ing on the physical properties of the material of the wire seg-
ments and the oxide layers respectively. To make the design 
and fabrication process easier, authors have considered fixed-
length and uniform width wire segments. Thus, both wire 
segment resistance and capacitance are posynomial functions 
of the wire widths wi; wi be our design variables. 

A 4-bit R-2R Ladder D/A Converter Circuit as shown in 
Fig. 2, is considered for demonstration. The interconnect wire 
segments are also shown in Fig. 2. The entire circuit becomes a 
resistor-capacitor (RC) tree by substituting the -model for 
each of the wire segments (Fig. 1). 

For an RC tree circuit, the Elmore delay m to capacitor m is 
given by [1], 
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The Elmore delay is a sum of products of iC and Rj’s, thus 
it is a posynomial function of the wire widths wi. The critical 
delay of the circuit is the largest Elmore delay to any capacitor 
in the circuit: 
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The Elmore delay to the load capacitance CL, when the S0 
(LSB) switches from either low to high or high to low (keeping 
all other bits (S3, S2 & S1) grounded) can be calculated from 
Fig. 3. Each branch of the RC tree circuit (Fig. 3) either has the 
associated wire resistance (Ri) or has circuit component resis-
tance (R or 2R). Each node has either one or several capacit-
ances (capacitance contributed by the upstream and down-
stream wire segments).The resulting RC tree has resistances 

and capacitances which are actually posynomial functions of 
the wire segment widths wi. For the RC tree circuit shown is 
Fig. 3, 

      10 CC  , 11 CC  , 22 CC  ,  

      4323 CCCC  , 

      34 CC  , 45 CC  , 56 CC  ,  

      7657 CCCC  , 

      68 CC  , 79 CC  , 810 CC  ,  

109811 CCCC  ,                 (7) 

      912 CC  , 1013 CC  , 1114 CC  ,            

      13121115 CCCC  , 

      1316 CC  , 

      LL CCC  13  

 

 

Fig. 1. (a) Interconnect wire segment with length li and width wi, (b) RC π-

model of the interconnect wire segment. 

 

The Elmore delay to (leaf) capacitor LC  for voltage switch 
at S0 and keeping S1 = S2 = S3 = 0, in the RC tree given by δL0 
can be calculated very easily from equation (5). Similarly the 
Elmore delays δL1, δL2 & δL3 to LC , when S1 → voltage switch and 
S0 = S2 = S3 = 0, S2 → voltage switch and S0 = S1 = S3 = 0 and S3 
→ voltage switch and S0 = S1 = S2 = 0 respectively can be deter-
mined from equation (5). Therefore, the critical delay to LC  is 
the largest of the δL0, δL1, δL2 & δL3. i.e., 
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Obviously the critical delay δc is a generalized posynomial of 
the wire widths wi, because δc is a maximum of a set of posy-
nomials. 

Now the wire sizing problem for 4-bit R-2R Ladder D/A 
converter can be formulated as the constrained optimization 
problem as, 

              Minimize   c  

 Subject to  max
ii

min
i www  , n.........,,,i 321 ,     (9) 
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With variables w1, w2, …..wn, where  wi
min  & wi

max are the 

lower and upper bounds on the wire widths i ; and Amax
 is the 

limit on the total wire area. This is clearly a Generalized Geome-
tric Programming (GGP) problem. 
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Fig. 2. 4-bit R-2R Ladder D/A Converter Circuit with load capacitance CL, showing different interconnect wire segments. 

 

Fig. 3. RC tree model of the 4-bit R-2R Ladder D/A converter circuit in Figure 3 using the π-model of the interconnect wire segment. 

 

4 EXPERIMENTAL RESULTS 

Numerical experiment is carried out to solve the wire siz-
ing problem formulated as GGP problem described in equa-
tion (10) to minimize the critical delay δc of the 4-bit R-2R Lad-
der D/A Converter Circuit. The GGP problem is implemented 
in MATLAB [15]; using cvx-solver tool [16] in MATLAB soft-
ware, it is solved to obtain optimal wire sizes for which the 
critical delay associated with circuit is minimum. The experi-
mental results are summarized in Table 1. From Table 1 it can 
be observed that critical delay δc associated with the 4-bit R-2R 
ladder D/A converter circuit can be reduced by 26.59 % by 
sizing the interconnect wire widths using GGP approach. Fur-
ther circuit is tested for different initial guesses of unsized 
wires widths at the starting point. But for all those cases the 
solution converges to the same final wire sizes, which strongly 
establishes the globally optimal solution of the problem. Here 
the lower and upper bounds of the wire widths are taken as 
wi

min = 0.300 m and wi
max = 0.500 m and the upper limit of the 

total wire area is taken as Amax = 30×10-12 m2. The passive resis-
tance of the circuit is taken as R = 100 Ω (2R = 200 Ω) and the 
load capacitance is taken a CL = 1.0 pF. 

The same approach is used to minimized the critical delay 
in k-bit R-2R ladder D/A converters (where k = 2, 4, 6, 8, 10, 

12, 14, 16) to investigate the performance of this approach un-
der increased complexity of the circuit, thus under the in-
creased number of optimization variables. Fig. 4 shows the 
variations of CPU time (time require for CPU to size the cir-
cuit), number of interconnect wires (n) against number of bits 
(k = order of the circuit) in R-2R ladder D/A converter circuit. It 
can be observed from Fig. 4 that, both CPU time and number 
of interconnect wires increases almost linearly with number of 
bits (k) in R-2R ladder D/A converter circuit.  Fig. 5 shows the 
variation of critical delay of both sized and unsized R-2R lad-
der D/A converter circuits against order of the circuit (k). Fig. 
6 also shows the variation of percentage of reduction in critical 
delay of the R-2R ladder D/A converter circuit due to sizing 
against k.  It is interesting to observe from Fig. 5 and Table 2 
that, the percentage of reduction in critical delay (i.e. Δ δc / δc 

(Unsized) (%), where Δ δc = δc (Unsized) - δc (Sized)) and thereby im-
provement of the level of circuit performance is significant in 
lower order D/A converter circuits due sizing via GGP ap-
proach. But this level of improvement due to sizing decreases 
as the order of the circuit (k), i. e. the complexity of the circuit 
increases. For example, reduction of critical delay is 39.46 % 
for 2-bit R-2R ladder D/A converter, while the same reduction 
is much lesser, only 20.64 % for 16-bit R-2R ladder D/A con-
verter.  
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Fig. 4. CPU time and Number of Interconnect Wires versus Number of Bits 

in R-2R Ladder D/A Converter plots. 

 

Fig. 5. Critical Delay and Percentage of Reduction in Critical Delay due to 

sizing versus Number of Bits in R-2R Ladder D/A Converter plots. 

 

 
Table 1: Results of 4-bit R-2R Ladder D/A Converter Circuit. 

(Hardware environment: Intel® CoreTM 2 Duo Processor T5750, 2 GB DDR2 RAM, 
Software environment: Microsoft Windows XP, SP-2) 

Circuit Interconnect wire 
number, i 

li 

(μm) 

Unsized Sized 

wi 

(μm) 

A 

(μm2) 

δc (Unsized) 

(ns) 

wi 

(μm) 

A 

(μm2) 

δc (Sized) 

(ns) 

CPU 

(sec.) 

 

 
 
 

4-bit 
R-2R Lad-
der D/A 

Converter 

1 5 0.4000  

 
 
 
 
 

25.9999 

 

 
 
 
 
 

0.5069 

0.3015  

 
 
 
 
 

27.2568 

 

 
 
 
 
 

0.3563 

 

 
 
 
 
 

26.59 

2 5 0.4000 0.3029 

3 5 0.4000 0.4989 

4 5 0.4000 0.4939 

5 5 0.4000 0.4926 

6 5 0.4000 0.3020 

7 5 0.4000 0.4919 

8 5 0.4000 0.4911 

9 5 0.4000 0.3018 

10 5 0.4000 0.4916 

11 5 0.4000 0.4904 

12 5 0.4000 0.3013 

13 5 0.4000 0.4913 

 

Table 2: Results of k-bit R-2R Ladder D/A Converter Circuits (k = 2, 4, 6, 8, 10, 12, 14, 16). 
(Hardware environment: Intel® CoreTM 2 Duo Processor T5750, 2 GB DDR2 RAM, 

Software environment: Microsoft Windows XP, SP-2) 

Number of Bits in R-2R 
Ladder D/A Converter, k 

Number of Interconnect 
Wires, n 

Unsized Sized Percentage of Reduction in Critical Delay, 

Δδc / δc (Unsized) 

(%) 

δc (Unsized) 

(ns) 

δc (Sized) 

(ns) 

CPU 

(sec.) 

2 7 0.2002 0.1212 12.43 39.46 

4 13 0.5069 0.3563 26.59 29.71 

6 19 0.9678 0.7178 37.16 25.83 

8 25 1.6890 1.2890 49.05 23.68 

10 31 2.7988 2.1788 61.19 22.15 

12 37 4.2350 3.3235 75.91 21.52 

14 43 6.5611 5.1861 91.13 20.96 

16 49 9.2034 7.3034 112.44 20.64 
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5 CONCLUSION 

In this paper, the wire sizing problem is formulated and solved 

to minimize the critical delay in R-2R D/A converter circuits via 

Generalized Geometric Programming approach. Numerical 

experiments ensure that critical circuit delays associated with 
those circuits can be significantly reduced by sizing the widths 

of the interconnect wire segments using GGP. This sizing ap-

proach can be further extended to size different active (transis-
tors) and passive components simultaneously in analog VLSI 

circuits, which might be extremely useful for realization of im-

proved performance mixed-signal VLSI chips. 
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